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1. INTRODUCTION

Let g denote a complex-valued function of the real variable t, Integrable
with respect to a Lebesgue Stielt jes measure M on an interval I. 8y the "quadrature"

of g on I vwe mean the value of the integral

ale) = jl a(t') aue), (1)

By'"numerical quadrature"of g we mean an (approximate) evaluation QN(@) of Q(g)
by means of a numerical algorithm based on a set of samples of & on I and
possibly on some of the derivatives of g at the codpoints of I.
%
Quadrature evaluations occur in important applications. Some of the
applications that we shall consider are:

(a) Ordinary integration of & over an interval I (M 1s then  tho ordinary

Lebesgue measure on the real line);
(b) Calculation of the nth. moment of g, where g 1s a mass den:ity, a

charge density, or a probability density over I, thus

Qg) = f (¢ ety at, (2)
I

where n 1s an arbitrary nonnegative integer;

system, thus

| Qg) = ‘I h(t-t') g(t') dt'; (3)
I




Do

and (d) the Fourler transform of a signal g, thus

€0
oy o | omdemet oy
Q(e) (6 s(t') dt'. (4)

- 00

The main thrust of‘the work reported here is the use of "physical models”
for generating "strictly numerical" quadrature algorithms as follows: We assume
that g is generated by a dynamical system driven by an imput u whose energy
Is finite over the Interval 1, f.e. ue L?(I). Through such a selection of
a dynamical model it is posslble to incorporate a-priori informatlon about
g into the design of an algorithm for the numerical quadrature of g.

Qur model for the generation of ¢ is of the form (see ig.l):

~
F(f’;) =000 gty e g(n>) =y, '= d/dft, (

N
N

e d

where § 1is a general nth. order differential operator. 1In the lincar case

We assuue

e L k S ky &
He) = 2 o ) = (22" g2 10) g, ped/at, (6)
(= k=0

Wwhere a = i, and a

k=0, ..., n-1, are real constants. In the nonlinear case,

k’
we assume that F 1is a smooth function of its (u+l) arguments g, g', ..., g(n>.

having continuous partials with respect to these variables up to order n.

U —} "odel g

w= T = B(E,ety e ﬂ(n))

1

i, 1 (a) General Operator Model
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In both the linear and nonlinear cases, numerical

quadrature alrorithms will be obtained as solutions of an optimization

problem,

u | Linear Model | S g

~ - - n ok _
u=F(g) =L ¢=(1 a ") 7, D= d/dt
k=0

Fig,1(b) Lincar Operator Model
In Section 2, we consider the case of a linear sourcé model for g and,
in sectlon 3, we extend the theory to the nonlinear case.
Numerical simulations performed at Rice show the merits of the present

approach and they will be described separately.
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<, QUADRATURL BASED ON LINiAR MODKLS

As we shall sce in subsection 2.1, linear models lead to solutions based on
generalized splines. Considerable amount of rescarch on quadrature formulas
based on splines hacs heen done by Schoenberg [1}{2], sard [31, and Golomb UQ.

In what follows, we recast some of this spline theory in the language of
dynamic models,

In subsections 2.2 through 2.5, we show that such models lead to appropriate
"windows" for use in the numerical cvaluation of ordinary integrals, moments,
convolutions, and Fourier transforms. In what we have Jjust stated, we have
assumed that the model generating g is given to us. If it is unknown, we
show, in subsection 2.6, how to retrieve it from the data using a maximum

entropy approach.

2.1. ['undamentals of Spline Basced Solutions

Let Hi (1) denote the Sobolev space of complex-valued functions g on I=[a,b)
such that g(k), k=0,1,...,n-1, arc absolutely continuous and g(n)e L°(1).

. A o]
We will denote Ly Hi(I) the closed subspace of H;(~¢am) defined by
~2 2 k k
0 = {ren(-m,0): 1(1) = 0, ta, tr1 58(a) = 5 (v) = o,

1, ..., n-1; the restriction of 7 to I

]
belongzs to H;(I)}. (7)

Also, let L(D) be the linear operator defined Ly (), 1.e.

n-1
L) = 0"+ X a b, (8)
k=0




Ve will assume that the signal ¢ under conslideration (whose quadrature
1s to be obtalned) satisfies the [ollowlug conditions:
1-2 :
(1) ge iz (1);

(ii) we are given a set of complex numbers rl, sy r and a

=t < = y
a=t <t <., ¢ty <ty =D, (9)

with respect to which g satisfies the interpolating constraints
d%):%,i=1,nﬂu; (10)

(ii1) g belongs to the ellipsoidal class

f2n): Juo) ¢ ,
{oe™(D: 1o enhg(_mm)g} (11)

where ¥is some positive constant, and L(D) is assumed given,
If g satisfies all the above three conditions, we will write

ce X . (12)

Note that ﬁg (I) constitutes a Hilbert space under the inner product

(th)

fie(n)

b
=) (L(D) e*(£)){(D)n(2) dt, * = complex conj. (1)

Ye will use the folllowing two wellknown results [4] .

Proposition 1, The min-max problem

‘min  max \\g - ?f'“,‘
ge?{i(l) EQJL n

(1%4)




has a unique solution § which is the L-spline deflned by the set of equations

and conditions:

L(-D) (D) e(t) = o, ty <t Stigqr 150, oo, N (15a)

f:(tj) =T 1=, ., (15b)

2n- 2
fe (1) menr(1);

k
where C'(I) = space of functions on I with continuous k! derivatives.

(15¢)

The u corresponding to such a g is obtained simply by the relationship
u = L(D) 2. (16)

A
Yroposition 2 . Let @ be a continuous linear functional on Hi (1).

The min-max problem

min  omax |B(g) -3(3) | (17)
ef2(1) ¢ X

P
has a unique solution $(g) wlven by

/\ A
$(e) =@, (18)

where é is L-spline of Froposition 1.

2
Recognizing that for ge 11; (I) the quadrature

b
Q(e) =j e(t) A p (t) - (19)

a

A
is a continuous linear functional on Hi (1), Proposition 2 provides us with a




technique for calculating numerical quadrature QN(g) as a best estimate Q(Z)
of Q(g) on the basis of the data %<k>(a) = ﬁ(k>(b) =0, k=0,..., n-1,
ﬁ(ti) =Ty 1 =1,...,N, and the “physleal modcl" that generates {7, described

by the dynamical system
1(D) A(t) = G(t). (20)

The solution is to interpolate the data by thespline assoclated
with the operator I. and then perform the quadrature on this spline.
By way of example, suppose we model g as the output of a low-pass

filter with half-power frequency equal to one (See Fig. 2). We then have

L(D) = D+1, (21)
3
and the roots of the characteristic equations assoclated with L(D) and

L(-D) are respectively -1 and 1.
Model

Algo-

R I
. |

u(t) t<> E ¢ % ‘g(t) rithm
. l
i -

!
{
!
'
|

Fig., 2. Network Model for Basing Optimal Numerical
Quadrature Algorithm




So we have:

+ -t - t
= e
g(t) ay e +a, y b, <t <ti+1,.
1=0,4,..., N, (22)
where the constants a+i and a—i are assoclated with the homogeneous

solutlons pertaining to L(D) and L(-D), These constants are determined,
according to (15a) through (15¢), by the requirements that g satisfy the in-
terpolating constraints and the bpundar& conditions, and that g be continuous
on I,

In the general case in which the characteristic equation
L(s) = 0 (23)

assoclated ‘with the operator L(D) has n distinct roots Sqreeer S, (22)

generalizes to

n
+ st _ -5t
gt) = 2\ [a"y; od +a7; e 9], 6 <t by
J=1

i=0,1, ..., N, (24)

where again the constants a+ij and a—ij are determined by the requirement

that the interpolating and boundary constraints be satisfied in addition to the
requirement that the derivatives of g up to the order 2n-2 be continuous at
the knots.

If (23) has a repeated root say sk of multiplicity -Qk, the expression

inside the square brackets in (24) for that particular root is replaced by




Qk -1

[ 2 <aIkp e 24 kp (-6)P o5 ] ’ (25)
p=0 "

+ -
where aikp and aikp are suitable constants that depend on the data and

other conditions as mentioned above.

A set of basis functions which makes the dependence of g on the data

transparent is the so-called "cardinal spline basis" Lj] (also called "fundamental

spline basis" [6] ). This basis, which we dencte by B, is the set of splines
bi(t),.... bN(t) satisfying 15(a) through 15(c) with the data satisfying

r, = 8 13 (=kronecker delta) for the spline bj' Thus the spline bj has

2ero value§ at all the knots except at the jth. knot where it has value of
ﬁnity. It vanishes outside Exﬂﬂ . The sketches of Fig. 3 exhibit the
shapes of these basis functions. They look and act very much like sinc functions

and they apply to a finite set of samples (rathem than an infinite set 1like the

sine functions).

| - o
w3 - - -*<=N<:%r¢=~r—————- t
o Yy %43 by, tN--z) N tN-t
1 N
bz(t)/‘i . &N-—l
AR T P t
o "1 273 N-2 N Pn-t
bSLEg 4/<r\\\»
t ot~ t. to~. "~ . t t
1 2% Y N2 [N Nt
Y1
&1
F»W_bb‘(t) . N\,
Py - e—— — e d t
to b1 ttyT, Wty
ty-1

Fig. 3. Sketches of Cardinal Spline Basis Functions
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In terms of the basis elements of B, § can be represented as
N

D e(t) b (t)

g(t)

= Z r, b (t). (26)

We will use this representation of g in the following subsections.
Summarizing the developments in this subsection, we claim that we have

given all the detalls required to represent and calculate the entities needed

for the quadrature problems described below. They were used in the numerical

simulations&performed on our computers.

2.2. Ordinary Integration

The first application that we shall consider is the numerical integration

tN
Q(g) =f g(t) dt, (27)
ty

based on samples of g given by (10) and on the other conditions stated previously.
Representing our optimal estimate % of g by means of the cardinal spline
basis functions given by (26), we obtain the formula for the "model based"

numerical integration corresponding to (27):

N

; N
QN(g) = ZE Wy g(ti) = E; Wy Ty (28a)
i=1 i=1

where
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My = by (t) dt , 1 =1,...,N, (28v)

2.3. Evaluation of Moments

We remind the reader that in this and in the following subsections,
we assume the signal g to vanish outside the interval (a,b). This iﬁterval
is of course allowed to be of infinite length if necessary, by setting
a = -00 and/or b = oo.

An optimal algorithm for the numerical evaluation of the kth. moment

¥

now follows from the preceding theory to be

N N
Qle) = 2 w oelt) = 2w, (292)
1=1 1=1
where
Wy = 1k bi(t) dt, 1 =1, ..., N. (29b)
1

2.4, Convolution
Our model-based optimal numerical scheme for convolution of g with
an impulse response h is
N N

ay(hee) (1) = 121 Wy 6(ty) = ; R (30a)
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Wiy = ( h(t-t*) bi(t') at', 1i=1, ..., N, (30b)
I

2.5, Fourler Transforms and Filter Transfer Functions

In the same fashion as in the preceding subsections, we derive our

model-based algorithm for the calculation of the Fourier transform of g by

N N
WO = E ety = T, (31a)
vwhere
o)
LI 5 bi(t) o Wt dt, 1=1, ..., N. (31p)
-0

Note that in the special case in which the sampling instants are equi-
distant, 1if we set

by (4) = (b -1y,

(31a) ( if we consider appropriate discrete values of w ) becomes the

discrete Fourler transform of the data., Thus we see that the algorithm

that we prbposed 1s a flexible "model-based" extension of the DFT algorithm,
In the case in which g is the impulse response of a filter, we conclude
that (31a) and (31b) constitute an optimal algorithm for the derivation of

its transfer function in terms of the samples of the impulse response, E

2.6. Model Identification by a Maximum Entropy Approach

Thus far, the differential operator L(D) describing the model was
assumed known. In general, this may not be the case, and one would like

to develop a methodology for determining L(D) from the data and other
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prior information. Precisely, this may be formulated as follows:

Problem, Find the constants PN PR} In the differential operator

n-1
(8) from the data TpoeeesTy

The 1dentification procedure that we propose applies to uniformly sampled

-

data and is as follows, We assume that the samples {rk} result from an auto-

regressive process.

rk+n + an~lrk+n_l +...‘falrk+l + aol‘k = uk, k = l'--u )N—np (33)

vhere u 1s a white noilse process. The rationale for this assumption is
that 1t constitutes a discrete stochastic version of equation (6),
' N
From Tyree Ty We compute n samples of the sample autoavariance Rg(e),

&
= 0,...n=1. From these, the coefficients a‘j may be obtalned by requiring that

the Yule-Walker equations (7] be satisfied by 'ﬁg, i.e.

n-1
A A
L ayR(5-0) = R(n-0), L=1,..0n. (34)
Jj=0
The coefficients {aj} can also be obtained for the process (33) using the

maximum entropy method in a standard way ﬂﬂ.




3. QUADRATURE BASED ON NONLINEAR MODELS

We now propose a generalization of the preceding theoxry for the case in
which the signal g is assumed to be generated by the nonlinear model (5).
- We assume that g satisfies conditions (1) and (11) stated at the top of
page 5 and (instead of belonging to the ellipsoidal class (11)) velongs to the

class

‘4"={g€§r21 (1): lIF(s,e" .--.g(n)) I £¥}  (35)

L (00, o0)
where the F is such that Y is a convex and symmetric set in ﬁﬁ (I) and, in
addition, all nth order partials of F with respect to all its arguments are
continuous.,
i
We recail from the literature Ed [Eﬂ that in the linear case the solution

g of (14) is also the solution of the minimum norm problem

2
fzn | L(p)e li (1) - (36)
g€l (I)

g(ti)=ri,i=l,....N

By analogy, we seek the best estimate g of g in the nonlinear case as the

solution of

min !lg(g)ﬂsz(I) ' (37)
geﬁi(l)

g(ti)=ri,i=l,...N
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Where we recall that

Fle) = (g.g" .. .5™M) . (38)

For simplicity in presentation let us assume that the underlying linear
spaces are over the field of reals.

The solution g of (37) will be called a "nonlinear spline”. Such & must
satisfy [10} :

b
n
5 F (glg .--o.g( )) dt = O 9 (39b)
8(ty) =15, 1=1,... 0. (39b)
Performing the variation indicated in (39a) (under the fixed boundary

conditions assumed earlier), we are led to the Euler equation (we omit the

detalls of the derivation):

n
9 \Kpp o aln)y DE(EE,.. “)]_
Z(" at [F(g.e . ) &h(k) =0 (40)
Thus the nonlinear spline é 1s described by the nonlinear differential

equation (40) in each of the subintervals ty €t<t i=0,1,...,N, and by

i+1,
the conditions (15b) and (15¢c).
The optimal numerical quadrature based on the nonlinear model devel oped

above is simply given by (19) with g replaced by g of the preceeding paragraph.




L. concLusIon

A physical modeling basis and framework have been provided for constructing
various quadraturealgoritims. For this purpose, both existing and new results

on spline theory have been presented.
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